
 
 
 

Cytoscape 2.1 
 

 
 

User Manual 
 

Feb. 2005 
 
 

The Cytoscape Collaboration 
 
 
 
 
 
 
 
 
 
The Cytoscape project is an ongoing collaboration between: 

 

University of California at San Diego Institute for Systems Biology

 

Memorial Sloan-Kettering Cancer Center Institut Pasteur

 
Funding for Cytoscape is provided by a federal grant from the U.S. National Institute of General Medical 
Sciences (NIGMS) of the National Institutes of Health (NIH) under award number GM070743-01. 
Corporate funding is provided through a contract from Unilever PLC.  



Table of Contents 
 
1.  INTRODUCTION.................................................................................................................................................. 3 
2. LAUNCHING CYTOSCAPE ................................................................................................................................ 3 
3. QUICK TOUR OF CYTOSCAPE......................................................................................................................... 5 
4. COMMAND LINE ARGUMENTS AND PROPERTIES ................................................................................. 10 
5. BUILDING AND STORING INTERACTION NETWORKS.......................................................................... 13 
6. LOADING GENE EXPRESSION DATA........................................................................................................... 17 
7. NODE AND EDGE ATTRIBUTES..................................................................................................................... 20 
8. NAVIGATION AND LAYOUT........................................................................................................................... 22 
9.  VISUAL STYLES ................................................................................................................................................ 24 

9.1  INTRODUCTION TO VISUAL STYLES .................................................................................................................. 24 
9.2  VISUAL ATTRIBUTES, GRAPH ATTRIBUTES AND VISUAL MAPPERS.................................................................. 27 
9.3  TUTORIAL:  CREATING A NEW VISUAL STYLE.................................................................................................. 30 
9.4  TUTORIAL:  CREATING A NEW VISUAL STYLE WITH A DISCRETE MAPPER....................................................... 32 
9.5  TUTORIAL:  VISUALIZING EXPRESSION DATA ON A NETWORK......................................................................... 33 

10. FILTERS.............................................................................................................................................................. 34 
11. ACKNOWLEDGEMENTS................................................................................................................................ 39 
APPENDIX: ANNOTATION SERVER FORMAT............................................................................................... 40 

INTRODUCTION........................................................................................................................................................ 40 
BUILDING YOUR OWN ANNOTATION FILES............................................................................................................... 40 
LOAD DATA IN-PROCESS ........................................................................................................................................ 42 
GETTING AND REFORMATTING GO DATA............................................................................................................... 43 

APPENDIX: GNU LESSER GENERAL PUBLIC LICENSE.............................................................................. 48 
 



1.  Introduction 
 
Cytoscape is an open-source community software project for integrating biomolecular interaction 
networks with high-throughput expression data and other molecular states into a unified 
conceptual framework. Although applicable to any system of molecular components and 
interactions, Cytoscape is most powerful when used in conjunction with large databases of 
protein-protein, protein-DNA, and genetic interactions that are increasingly available for humans 
and model organisms. A software “Core” provides basic functionality to layout and query the 
network; to visually integrate the network with expression profiles, phenotypes, and other 
molecular states; and to link the network to databases of functional annotations. The Core is 
extensible through a straightforward plug-in architecture, allowing rapid development of 
additional computational analyses and features. The central organizing metaphor of 
Cytoscape is a network graph, with genes, proteins, and molecules represented as nodes 
and interactions represented as links, i.e. edges, between nodes. 
 
Development 
Cytoscape is a collaborative project between the Institute for Systems Biology (Dr. Hamid 
Bolouri), the University of California San Diego (Dr. Trey Ideker), Memorial Sloan-Kettering 
Cancer Center (Dr. Chris Sander) and the Institut Pasteur (Dr. Benno Schwikowski). 
 
Visit http://www.cytoscape.org for more information. 
 
License 
Cytoscape is protected under the GNU LGPL (Lesser General Public License).  The License is 
included as an appendix to this manual, but can also be found online: 
http://www.gnu.org/copyleft/lesser.txt  Cytoscape also includes a number of other open source 
libraries, which are detailed in Section 10, Acknowledgements below. 

 

2. Launching Cytoscape 
 
Currently, Cytoscape runs under Java on Linux, Windows, and Mac OS X. Although Cytoscape 
handles arbitrary types and sizes of interaction network, it is most powerful when used in 
conjunction with large interaction data sets such as are currently available for species such as 
Saccharomyces cerevisiae (budding yeast). 
 
System requirements: 
The system requirements for Cytoscape depend on the size of the networks the user wants to 
load, view and manipulate.  We recommend a recent computer (1GHz CPU or higher) with a 
high-end graphics card and at least 256MB of free physical RAM. Cytoscape expects a minimum 
screen resolution of 1024x768. 
 



(1) Download and unpack the distribution.  Cytoscape is distributed as a compressed archive 
(tar.gz or zip) containing the following files and directories: 
 
cytoscape.jar Main Cytoscape application (Java archive) 
cytoscape.props User-configurable properties and preferences 
vizmap.props User-configurable visual mapping preferences 
 
cytoscape.sh Script to run Cytoscape from command line (Linux, Mac OS X) 
cytoscape.bat Script to run Cytoscape (Windows) 
 
LICENSE.txt Cytoscape GNU License 
Cytoscape2_1Manual.pdf Cytoscape 2.1 Manual (the document you are reading now) 
 
sampleData/ 
   galFiltered.gml Sample molecular interaction network file * 
   galFiltered.sif Identical network in Simple Interaction Format * 
   galExpData.pvals Sample gene expression matrix file * 
   BINDyeast.sif Network of all yeast protein-protein interactions in the BIND 

database as of July, 2004 ** 
   BINDhuman.sif Network of all human protein-protein interactions in the BIND 

database as of July, 2004 ** 
   yeastHighQuality.sif Sample molecular interaction network file *** 
 
annotation/ Directory containing Gene Ontology database entries (currently for 

yeast only). Info in this directory is used to associate gene names 
with synonyms as well as process, function, and cellular location 
data. 

 
plugins/ Directory containing cytoscape PlugIns, in .jar format. 
 
*  From Ideker et al, Science 292:929 (2001) 
** Obtained from data hosted at http://www.blueprint.org/bind/bind_downloads.html 
** From von Mering et al, Nature, 417:399 (2002) and Lee et al, Science 298:799 (2002) 
 
 
(2) If necessary, install Java.  If not already installed on your computer, download and install 
the Java 2 Runtime Environment, version 1.4.2 or higher.  It can be found at: 
 
http://java.sun.com/j2se/1.4.2/download.html 
 
(3) Launch the application by running "cytoscape.sh" from the command line (Linux or Mac 
OS X) or double-clicking "cytoscape.bat" (Windows). Alternatively, you can pass the .jar file to 
Java directly using the command "java -jar cytoscape.jar".  In Windows, it is also possible to 
directly double-click the .jar file to launch it.  However, this does not allow specification of 
command-line arguments (such as the location of the annotation data directory, see the section 4. 
Command Line Arguments for details).  On Mac OS X, users who downloaded the Mac OS X 
version of Cytoscape, can double-click on the Cytoscape icon to start Cytoscape. Either double-



clicking or dragging onto the Cytoscape application any .sif or .gml file will load that file into 
Cytoscape. 
 
 
 
 
 
 
 
 
 
 
Cytoscape Window 
When you succeed in launching Cytoscape, a window will appear that looks like this: 

 

 

 

3. Quick Tour of Cytoscape 
 
When a network is loaded, Cytoscape will look something like the image on the next page: 

 !  Important Note: 
For the application to work properly, ALL FILES MUST BE LEFT IN THE 
DIRECTORY IN WHICH THEY ARE UNPACKED.  The core Cytoscape 

application assumes this directory structure when looking for certain files, such 
as cytoscape.props, vizmap.props, and the annotation/ database. 



 

 
 
The main window has five components: 

1. The menu bar at the top (See below for more information about each menu item). 
2. The toolbar, which contains icons for commonly used functions.  These functions are also 

available via the menus. Hover the mouse pointer over an icon and wait momentarily for 
a description to appear as a tooltip. 

3. The network management window (top-left white box). 
4. The overview window (bottom-left overview of the network). 
5. The main network view window, which displays the network. 

 

The Menus 
 
File 
The File menu contains most basic file functionality: File / Load for loading a 
variety of file types; File / Save for saving. File/Help displays a credits screen. 
File / Print allows printing. File / Export As... allows you to export to a file in a 
number of graphics formats (such as postscript).  File / Exit closes all windows 
of Cytoscape and exits the program. 
 
 



 
Edit 
The Edit menu contains a Squiggle feature that enables you to mark up 
your network. This can be particularly useful during live presentations. 
There are also options for creating and destroying views (graphical 
representations of a network) and networks (the network data – not yet 
visualized).   
The Edit Menu also supports Preferences editing for properties and 
plug-ins via a Preferences Dialog.  Preferences editing operates on the cytoscape.props file 
associated with the user’s instance of Cytoscape.  See “Commands Line Arguments and 
Properties” for more information. 
 
 
Data 
The Data menu allows you to display the attribute browser, which 
lets you view attributes assigned to both nodes and edges. (See 
the section 7. Node and Edge Attributes) Other options shown 
relate to plugins which are packaged with Cytoscape 2.1. 
 
 
Select 
The Select menu contains methods and operations for selecting 
nodes and edges, and using the current selection to create a new 
network and an associated view. 
 
 
 
Layout 
The Layout menu has an array of features for organizing the network 
visually according to one of several algorithms, aligning and rotating 
groups of nodes, and adjusting the size of the network.  Most of these 
features are available from plugins that are packaged with Cytoscape 
2.1 
 
 
 
 
Visualization 
The Visualization menu provides options for changing the mapping 
from biological data to a visual representation: colors of nodes, 
thickness of edges, etc.  These features are explored in-depth in the 9.  
Visual Styles section.  This menu also provides an Overview (Bird’s 
Eye view) of your entire network, which is helpful for navigating very 
large networks. 
 
 



PlugIns 
The PlugIns menu has menu entries or choices added by plugins that 
have been loaded, such as "Find Enriched Attributes". 
 
 
 
 
 
 
 
Filters 
This menu has been added by the plugin in the file "filter.jar". The function of this plugin is not 
described further in this manual. Additional menus may appear, depending on the set of PlugIns 
you have chosen to load. 
 
Help 
The Help menu allows users to launch the online help viewer and browse 
the table of contents (Contents…), or view the help text associated with a 
context-sensitive selection  (Context Sensitive…). By selecting Context 
Sensitive… menu item and then selecting a GUI component, the help 
related to the selected item is launched. The “About…” menu item displays information about 
the running version of Cytoscape. 
 
 

The Network Management Window 
 
Cytoscape 2.1 allows multiple networks to be loaded at a time, either with or without a view.  A 
network stores all the nodes and edges that are loaded by the user and a view displays them.  You 
can have many views of the same network.  Networks (and their optionally associated views) can 
be organized hierarchically. 
 
An example where a number of networks have been loaded and arranged hierarchically is shown 
below: 
 

Note:  A list of Cytoscape PlugIns with descriptions is available online at: 
http://cytoscape.org/plugins2.php 



 
 
The network manager (marked by the red square) shows the networks that are loaded. Clicking 
on a network here will make that view active in the main window, if the view exists (green 
highlighted networks only).  Each network has a name and size (number of nodes and edges), 
which are shown in the network manager.  If a network is loaded from a file, the network name 
is the name of the file.  
 
Since some networks are very large (thousands of nodes and edges) and can take a long time to 
display.  For this reason, a network in Cytoscape may not contain a ‘view’. Networks that have a 
view are highlighted in green and networks that don’t have a view are highlighted in red.  You 
can create or destroy a view for a network by right-clicking the network name in the network 
manager or by choosing the appropriate option in the edit menu. You can also destroy previously 
loaded networks this way. In the picture above, five networks are loaded, three green ones with 
views and two red ones without views. 
 
Certain operations in Cytoscape will create new networks.  If a new network is created from an 
old network, for example by selecting a set of nodes in one network and copying these nodes to a 
new network (via the Select->To New Network option), it will be shown as a child of the 



network that it was derived from.  In this way, the relationships between networks that are loaded 
in Cytoscape can be seen at a glance. 
 
The available network views are also shown as tabs on the top of the view window. You can 
click on the tab to go to the named network and the network manager will update accordingly. 
Advanced users: Cytoscape also has two viewing modes that alter the way in which these 
windows are displayed.  This mode can only be selected on startup of the program by adding the 
–t option on the command line (see section 4. Command Line Arguments). 
 

The Network Overview Window 
 
The network overview window shows an overview (or ‘bird’s eye view’) of the network.  It can 
be used to navigate around a large network view.  This feature can be turned on an off via the 
Visualization menu. The red-outlined blue rectangle in the overview window shown below can 
be dragged with the mouse to navigate to a part of the network. The size of the navigation 
rectangle depends on the size of the active view and the zoom level of the view.  The rectangle is 
smaller if the view is zoomed in and larger if zoomed out. 

 
 

4. Command Line Arguments and Properties 
 
Cytoscape recognizes a number of optional command line arguments, including run-time 
specification of network files and expression data: 
 
 -g | -graph <GML network filename>  (xxx.gml) 
 Loads a network file in GML format (see 5. Building and 

Storing Interaction Networks) 
 
 -i  | -interaction <SIF interactions filename>   (yyy.sif) 
 Loads a network file in SIF format (see 5. Building and 

Storing Interaction Networks) 
 
 -b | -BDS <bioData directory> (e.g. annotation/manifest)  



 Specifies which directory to use for the BioDataServer 
annotations 

 
 -e | -expression  <expression filename>  (zzz.pvals) 
 Loads an expression data file (see 6. Loading Gene 

Expression Data) 
 
 -n | -nodeAttributes  <nodeAttributes filename>  (one or more) 
 Loads node attributes files (see 7. Node and Edge 

Attributes) 
 
 -j | -edgeAttributes  <edgeAttributes filename>  (one or more) 
 Loads edge attributes files 
 (see 7. Node and Edge Attributes) 
 
 -s | -species   Set the default species name 
 
 -c | -noCanonicalization  Turn off default node name canonicalization 
 
 -h | -help | -help | --help  Help: display these command line arguments 
 
 -p | -plugin | --JLD | --JLW | --JLL  Specify a list of plugins (jar files), directories containing 

plugins, URLs (http://) to jar files, or URLs to manifest 
files listing jar files 

 
 -props <properties file> specify and load a properties file 
 
 -headless | -noView Run in headless mode; do not create and display the GUI 
 
-noDialog | -suppressView Do not popup informational dialog when express file is 

loaded 
-vt | --VT <view threshold> Specify the threshold # of nodes at which views will not 

automatically be created 
 
-project <project file> Specify the location of the project file 
 
-script | --script <script text…> -end Specify script text 
 
-rp | -resourcePlugin <resource plugins…>  
 Specify the list of resource plugins 
 
Note that most data sets may also be loaded after Cytoscape is running.  See sections 5. Building 
and Storing Interaction Networks, 6. Loading Gene Expression Data, and 7. Node and Edge 
Attributes for details. 
 



Additional command line arguments that are not recognized by the Cytoscape core are passed to 
the PlugIn modules.  Please refer to the documentation for each specific PlugIn for more details. 
 
Cytoscape Properties 
 
The Cytoscape Preferences Dialog, accessed via Edit->Preferences…, has sections for general 
properties display/editing and plugins specification via the properties mechanism. Preferences in 
Cytoscape are stored in the form of Java properties 
specified in the cytoscape.props file located in the 
users’ working directory, home directory or 
Cytoscape distribution directory. This file is 
automatically loaded at startup time and written 
upon normal exit of the application. 
 
Cytoscape properties are displayed in the Properties 
section of the dialog. These properties are 
configurable via Add, Modify and Delete 
operations. 
 
The specification of plugins to be loaded into 
Cytoscape at startup time is also supported in 
cytoscape.props and accessible in this dialog under 
the Plugins section. In this special case, the plugins 
property specifies a comma-separated list of jar 
files or URLs to jar files containing plugins. This 
property is parsed into its constituents and 
presented and managed in the Plugins table, as at left. 
 
 
Some common properties are described below. 
 
Property name Default 

value 
Valid values Related 

command 
line 
argument

defaultSpeciesName PleaseSpecify species names 
this value must match the name in the 
first line of the file specified in the 
bioDataServer’s manifest for synonyms 
e.g., for yeast synonyms, specify 
Saccharomyces cerevisiae 

 -s 
-species 

bioDataServer PleaseSpecify annotation/manifest, and other manifest 
file locations 

-b 
-BDS 

viewThreshold 500 integers > 0 -vt 
--VT 

secondaryViewThreshold 2000 integers > 0  



Property name Default 
value 

Valid values Related 
command 
line 
argument

viewType tabbed tabbed  
plugins  comma-separated list of jar files 

containing plugins, or URL’s to jar files 
containing plugins (e.g., 
http://server/my-plugin.jar) 

-p 
-plugin  
--JLD  
--JLW  
--JLL 

 
 
Java System properties 
 
Cytoscape also honors a new Java system property introduced in Java 1.4: java.awt.headless. 
This property allows the Java system to run without Graphics support; Cytoscape running in this 
mode allows users to run non-graphical analyses as batch jobs or on systems without 
keyboard/mouse/display capabilities, such as compute servers. 
 
-Djava.awt.headless=[ true | false ] Similar to command line argument –headless | -noView; 

run in headless mode, do not create and display the GUI 

 

5. Building and Storing Interaction Networks 
 
Cytoscape reads an interaction network in two ways: from a simple interaction file (SIF or .sif 
format) or from a standard format known as Graph Markup Language (GML or .gml format).  
SIF specifies nodes and interactions only, while GML stores additional information about 
network layout and allows network data exchange with a variety of other network display 
programs.  Typically, SIF is used to import interactions when building a network for the first 
time, since it is easy to create in a text editor or spreadsheet. Once the interactions have been 
loaded and layout has been performed, the network may be saved to and subsequently reloaded 
from GML format in future Cytoscape sessions.  Both SIF and GML are ASCII text files, and 
you can edit and view them in a regular text editor.  Additionally, GML is supported by some 
other network visualization tools. 
 
SIF FORMAT:  
 
The simple interactions format is convenient for building a graph from a list of interactions. It 
also makes it easy to combine different interaction sets into a larger network, or add new 
interactions to an existing data set. The main disadvantage is that this format does not include 
any layout information, forcing Cytoscape to re-compute a new layout of the network each time 
it is loaded. 
 



Lines in the SIF file specify a source node, a relationship type (or edge type), and one or more 
target nodes: 
 
nodeA <relationship type> nodeB 
nodeC <relationship type> nodeA 
nodeD <relationship type> nodeE nodeF nodeB 
nodeG 
... 
nodeY <relationship type> nodeZ 
 
A more specific example is: 
 
node1 typeA node2 
node2 typeB node3 node4 node5 
node0 
 

The first line identifies two nodes, called node1 and node2, and a single relationship between 
node1 and node2 of type typeA. The second line specifies three new nodes, node3, node4, and 
node5; here "node2" refers to the same node as in the first line. The second line also specifies 
three relationships, all of type typeB and with node2 as the source, with node3, node4, and 
node5 as the targets, respectively. This second form is simply shorthand for specifying multiple 
relationships of the same type with the same source node. The third line indicates how to specify 
a node that has no relationships with other nodes. This form is not needed for nodes that do have 
relationships, since the specification of the relationship implicitly identifies the nodes as well. 
Duplicate entries are allowed and indicate multiple edges between the same nodes. For example, 
the following specifies three edges between the same pair of nodes, two of type pp and one of 
type pd: 
 
node1 pp node2 
node1 pp node2 
node1 pd node2 

 
Edges connecting a node to itself (self-edges) are also allowed: 
 
node1 pp node1 

 
Every node and edge in Cytoscape has an identifying name, most commonly used with the node 
and edge data attribute structures.  Node names must be unique as identically names nodes will 
be treated as identical nodes.  The name of each node will be the name in this file by default 
(unless another string is mapped to display on the node using the visual mapper – see 9.  Visual 
Styles). The name of each edge will be formed from the name of the source and target nodes plus 
the interaction type: for example, sourceName edgeType targetName. 
 
The tag <interaction type> should be one of: 
   pp .................. protein – protein interaction 
   pd .................. protein -> DNA 

   (e.g. transcription factor binding upstream of a regulating gene.) 
 
Any text string will work, but the above are the conventions that have been followed thus far. 
 



Additional interaction types are also possible, but not widely used, e.g.: 
   pr ..................  protein -> reaction 
   rc ..................  reaction -> compound       
   cr ..................  compound -> reaction 
   gl ..................  genetic lethal relationship 
   pm .................. protein-metabolite interaction  
   mp .................. metabolite-protein interaction  
 
Even whole words or concatenated words may be used to define other types of relationships e.g. 
geneFusion, cogInference, pullsDown, activates, degrades, inactivates, inhibits, 
phosphorylates, upRegulates 
 
Delimiters. Whitespace (space or tab) is used to delimit the names in the simple interactions file 
format. However, in some cases spaces are desired in a node name or edge type. The standard is 
that, if the file contains any tab characters, then tabs are used to delimit the fields and spaces are 
considered part of the name. If the file contains no tabs, then any spaces are delimiters that 
separate names (and names cannot contain spaces). 
 
If your network unexpectedly contains no edges and node names that look like edge names, it 
probably means your file contains a stray tab that's fooling the parser. On the other hand, if your 
network has nodes whose names are half of a full name, then you probably meant to use tabs to 
separate node names with spaces. 
 
Networks in simple interactions format are often stored in files with a ".sif" extension, and 
Cytoscape recognizes this extension when browsing a directory for files of this type. 
 
GML FORMAT: 
 
In contrast to SIF, GML is a rich graph format language supported by many other network 
visualization packages.  The GML file format specification is available at: 
 
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/ 
 
It is generally not necessary to modify the content of a GML file directly.  Once a network is 
built in SIF format and then laid out, the layout is preserved by saving to and loading from GML. 
Colors and other visual attribute defined in the GML file are not currently honored by Cytoscape, 
only the node labels and layout information. 
 
COMMANDS: 
Load and save network files using the File menu of Cytoscape. Network files may also be loaded 
directly from the command line using the –i (SIF format) or -g (GML format) options. 
 
FOR EXAMPLE: 
To load a sample molecular interaction network in 
SIF format, use the menu File / Load / Graph.   In 
the resulting file dialog box, select the file 
“sampleData/galFiltered.sif”. After a few seconds, a 



small network of 331 nodes should appear in the main window. To load the same interaction 
network as a GML, use the menu: File / Load / Graph again. In the resulting file dialog box, 
select the file “sampleData/galFiltered.gml”.  Node and edge attribute files as well as expression 
data and extra annotation can be loaded as well. 
 
NODE NAMING ISSUES IN CYTOSCAPE: 
 
Typically, genes are represented by nodes, and interactions (or other biological relationships) are 
represented by edges between nodes.  For compactness, a gene also represents its corresponding 
protein.  Nodes may also be used to represent compounds and reactions (or anything else) instead 
of genes. 
 
If a network of genes or proteins is to be integrated with Gene Ontology (GO) annotation or gene 
expression data, the gene names must exactly match the systematic ORF names specified in the 
other data files.  We strongly encourage naming genes and proteins by their systematic ORF 
name or standard accession number; common names may be displayed on the screen for ease of 
interpretation, so long as these are available to the program in the annotation directory or in a 
node attribute file. Cytoscape ships with all yeast ORF-to-common name mappings in a synonym 
table within the annotation/ directory. Other organisms will be supported in the future. 
 
Why do we recommend using standard gene names?  All of the external data formats recognized 
by Cytoscape provide data associated with particular names of particular objects. For example, a 
network of protein-protein interactions would list the names of the proteins, and the attribute and 
expression data would likewise be indexed by the name of the object. 
 
The problem is in connecting data from different data sources that don't necessarily use the same 
name for the same object. For example, genes are commonly referred to by different names, 
including a formal "location on the chromosome" identifier and one or more common names that 
are used by ordinary researchers when talking about that gene. Additionally, database identifiers 
from every database where the gene is stored may be used to refer to a gene (e.g. protein 
accession numbers from Swiss-Prot). If one data source uses the formal name while a different 
data source used a common name or identifier, then Cytoscape must figure out that these two 
different names really refer to the same biological entity. 
 
Cytoscape has two strategies for dealing with this naming issue, one simple and one more 
complex. The simple strategy is to simply assume that every data source uses the same set of 
names for every object. If this is the case, then Cytoscape can easily connect all of the different 
data sources. 
 
To handle data sources with different sets of names, as is usually the case when manually 
integrating gene information from different sources, Cytoscape needs a data server that provides 
synonym information (See section Appendix: Annotation Server Format). A synonym table gives 
a canonical name for each object in a given organism and one or more recognized synonyms for 
that object. Note that the synonym table itself defines what set of names are the "canonical" 
names. For example, in budding yeast the ORF names are commonly used as the canonical 
names. 



 
If a synonym server is available, then by default Cytoscape will convert every name that appears 
in a data file to the associated canonical name. Unrecognized names will be preserved. This 
conversion of names to a common set allows Cytoscape to connect the genes present in different 
data sources, even if they have different names – as long as those names are recognized by the 
synonym server. 
  
For this to work, Cytoscape must also be provided with the species to which the objects belong, 
since the data server requires the species in order to uniquely identify the object referred to by a 
particular name. This is usually done in Cytoscape by specifying the species name on the 
command line with the –s option or by adding a line to the cytoscape.props file of the form: 
 
defaultSpeciesName=Saccharomyces cerevisiae 

 
The automatic canonicalization of names can be turned off with the -c command line argument 
(i.e. java -jar cytoscape.jar -c) or by not loading any annotation.  This canonicalization of names 
currently does not apply to expression data. Expression data should use the same names as the 
other data sources or use the canonical names as defined by the synonym table. 

 

6. Loading Gene Expression Data 
 
Interaction networks are certainly useful as stand-alone models.  However, they are most 
powerful for answering scientific questions when integrated with further information about the 
biology associated with the network, such as gene or protein expression levels.  Once loaded, 
expression ratios/levels may be visually superimposed on the network, used in a filter to select a 
subset of nodes, or used to identify active modules and subsystems (via plugin analysis tools).  
An expression data set can be loaded at any time, but are only relevant once a network has been 
loaded. 
 
FORMAT: 
Gene expression ratios are specified over one or more experiments using a text file.  The file 
consists of a header and a number of space- or tab-delimited fields, one line per gene, with the 
following format: 
 
GeneName [CommonName] ratio1 ratio2 ... ratioN [pval1 pval2 ... pvalN] 
 
Brackets [] indicate fields that are optional.  The first two fields are the systematic gene name 
followed by an optional common name. Expression ratios are provided for each experiment, 
optionally followed by a p-value per experiment or other measure of the significance of each 
ratio, i.e. whether the ratio represents a true change in expression (according to some statistical 
model.)  Significance values are generated by a variety of software packages for analyzing 
expression data generated by DNA microarrays, for instance a program VERA from the Institute 
of Systems Biology (http://www.systemsbiology.org/VERAandSAM).  A list of other microarray 
analysis packages is available at: http://www.nslij-genetics.org/microarray/soft.html 



 
Example: 
GENE DESCRIPT gal1RG.sig gal2RG.sig gal3RG.sig gal1RG.sig gal2RG.sig gal3RG.sig 
YHR051W COX6 -0.034 -0.052 0.152 1.177 0.102 0.857 
YHR124W NDT80 -0.090 -0.000 0.041 0.130 0.341 0.061 
YKL181W PRS1 -0.167 -0.063 -0.230 -0.233 0.143 0.089 

 
The first line is a header line giving the names of the experimental conditions. Note that each 
condition is duplicated; the first set of columns gives expression ratios and the second set gives 
significance values. The significance columns can be omitted if your data doesn't include 
significance measures. Every remaining row specifies the values for a gene, starting with the 
formal name of the gene, then a common name, then the ratios, then the significance values. 
 
Some variations on this basic format are recognized: see the formal file format specification 
below for more information. Expression data files commonly have the file extensions ".mrna" or 
".pvals", and these file extensions are recognized by Cytoscape when browsing for data files. 
 
COMMANDS: 
Load an expression data file using the File menu of Cytoscape, or by specifying the filename 
using the -e option at the command line.  Mac OS X users, who have downloaded the Mac OS X 
version of Cytoscape, can also drag SIF and GML file to the Cytoscape application to load those 
files.  The –x command line option indicates that the expression data should not be loaded into 
node attributes.  This is an advanced option, and is typically only used when the number of 
expression conditions is sufficiently large that it becomes unwieldy in the normal user interface. 
 
FOR EXAMPLE: 
Load a sample gene expression data set using the menu: File / Load / Expression Matrix File. In 
the resulting file dialog box (shown at right), select the file “sampleData/galExpData.pvals”.  As 
described in the following sections, Cytoscape is now ready to integrate these data with the 
underlying molecular interaction network.  Advanced Note: the checkbox in the lower left 
corner of the file dialog asks whether to “Copy Expression Data to Graph Attributes” – un-
checking this box has the same effect is as the command line option -x, and it is left checked by 
default.  If checked, this means that expression data values will be stored internally in Cytoscape 
in two places, once in an internal expression data object and once in node attributes. The 
advantage of also storing this information on node attributes is that the expression information 
can be easily visualized. 
 
Detailed file format (Advanced users) 
In all expression data files, any whitespace (spaces and/or tabs) is considered a delimiter between 
adjacent fields. Every line of text is either the header line or contains all the measurements for a 
particular gene. No name conversion is applied to expression data files (see the section on name 
resolution in section  
5. Building and Storing Interaction Networks). The names given in the first column of the 
expression data file should match exactly the names used elsewhere (i.e. in SIF or GML files). 
 
The first line is a header line with one of the following three formats: 



<text> <text> cond1 cond2 ... cond1 cond2 ... [NumSigConds] 
<text> <text> cond1 cond2 ... 
<tab><tab>RATIOS<tab><tab>...LAMBDAS 

 
The first format specifies that both expression ratios and significance values are included in the 
file. The first two text tokens are ignored; these columns will contain names for each gene. The 
next token set specifies the names of the experimental conditions; these columns will contain 
ratio values. This list of condition names must then be duplicated exactly, each spelled the same 
way and in the same order. Optionally, a final column with the title NumSigConds may be 
present. If present, this column will contain integer values indicating the number of conditions in 
which each gene had a statistically significant change according to some threshold.  
 
The second format is similar to the first except that the duplicate column names are omitted, and 
there is no NumSigConds fields. This format specifies data with ratios but no significance values. 
 
The third format specifies an MTX header, which is a commonly used format. Two tab 
characters precede the RATIOS token. This token is followed by a number of tabs equal to the 
number of conditions, followed by the LAMBDAS token. This format specifies both ratios and 
significance values. 
 
 
Each line after the first is a data line with the following format: 
FormalGeneName CommonGeneName ratio1 ratio2 ... [lambda1 lambda2 ...] [numSigConds] 
 
The first two tokens are gene names. The names in the first column are the keys used for node 
name lookup; these names should be the same as the names used elsewhere in Cytoscape (i.e. in 
the SIF or GML files). Traditionally in the gene expression microarray community, who defined 
these file formats, the first token is expected to be the formal name of the gene (in systems where 
there is a formal naming scheme for genes), while the second is expected to be a synonym for the 
gene commonly used by biologists, although Cytoscape does not make use of the common name 
column. The next columns contain floating point values for the ratios, followed by columns with 
the significance values if specified by the header line. The final column, if specified by the 
header line, should contain an integer giving the number of significant conditions for that gene.  
Missing values are not allowed and will confuse the parser. For example, using two consecutive 
tabs to indicate a missing value will not work; the parser will regard both tabs as a single 
delimiter and be unable to parse the line correctly. 
 
Optionally, the last line of the file may be a special footer line with the following format: 
 
NumSigGenes int1 int2 ... 

 
This line specified the number of genes that were significantly differentially expressed in each 
condition. The first text token must be spelled exactly as shown; the rest of the line should 
contain one integer value for each experimental condition. 
 



7. Node and Edge Attributes 
 
Cytoscape allows the user to add arbitrary node and edge information to Cytoscape as node and 
edge attributes.  Attributes could be, for example, annotation data on a gene or confidence 
values in a protein-protein interaction.  These attributes can then be visualized in a custom user-
defined way by setting up a mapping from data attributes to visual attributes (colors, shapes, etc.) 
(see section 9.  Visual Styles). 
 
Node and edge attribute files are very simply formatted: A node attribute file begins with the 
name of the attribute on the first line, and on each following line, has the name of the node, 
followed by an equals sign, followed by the value of that attribute. Numbers and text strings are 
the most common attribute types.  All values for a given attribute must have the same type. For 
example: 
 
FunctionalCategory 
YAL001C = metabolism 
YAR002W = apoptosis 
YBL007C = ribosome 
 
An edge attribute file has much the same structure, except that the name of the edge is the source 
node name, followed by the interaction type in parentheses, followed by the target node name.  
Directionality counts, so switching the source and target will refer to a different (or perhaps non-
existent) edge.  The following is an example edge attributes file: 
 
InteractionStrength 
YAL001C (pp) YBR043W = 0.82 
YMR022W (pd) YDL112C = 0.441 
YDL112C (pd) YMR022W = 0.9013 
 
Cytoscape treats edge attributes as directional, so note that the second and third edge attribute 
values refer to two different edges (source and target are reversed, though the nodes involved are 
the same). 
 
Each attribute is stored in a separate file. Node and edge attribute files use the same format. 
Node attribute file names often use the suffix ".noa", while edge attribute file names use the 
suffix ".eda". Cytoscape recognizes these suffixes when browsing for attribute files. 
 
Node and edge attributes may be loaded at the command line using the –n and –j options or via 
the File / Load menu. 
 
When expression data is loaded using an expression matrix file (See 6. Loading Gene Expression 
Data), it is automatically copied into the Node Attributes data structure unless explicitly 
specified not to. 
 
Detailed file format (Advanced users) 
Every attribute file has one header line that gives the name of the attribute, and optionally some 
additional meta-information about that attribute. The format is as follows:  



attributeName class=formal.class.of.value category=attributeCategory 

The first field is always the attribute name: it cannot contain spaces. The file may optionally 
include either of the class and category fields. 

The category, if present, is saved and can be used by Cytoscape tools and plugins to group or 
filter the set of available attributes. 

If present, the class field defines the formal (package qualified) name of the class of the attribute 
values. For example, java.lang.String for Strings, java.lang.Double for floating point 
values, java.lang.Integer for integer values, etc. If the value is actually a list of values, the 
class should be the type of the objects in the list. The value class must implement the Serializable 
interface (see the object serialization section of the Java tutorial), allowing the data to be saved in 
an efficient binary form (this binary attribute format is not directly supported by Cytoscape). If 
the class is not a basic String or Number class, it should have a String representation and a 
constructor that takes a String argument, allowing Cytoscape to construct an instance from the 
String representation in the file. 

If no class is specified in the header line, Cytoscape will attempt to guess the type from the first 
value. If the first value contains numbers in a floating point format, Cytoscape will assume 
java.lang.Double; if the first value contains only numbers with no decimal point, Cytoscape 
will assume java.lang.Integer; otherwise Cytoscape will assume java.lang.String. Note 
that the first value can lead Cytoscape astray: for example, 

floatingPointAttribute 
firstName = 1 
secondName = 2.5 

In this case, the first value will make Cytoscape think the values should be integers, when in fact 
they should be floating point numbers. It's safest to explicitly specify the value type to prevent 
confusion. 

Every line past the first line identifies the name of an object and the String representation of the 
attribute value. The delimiter is always an equals sign; whitespace (spaces and/or tabs) before 
and after the equals sign is ignored. This means that your names and values can contain 
whitespace, but object names cannot contain an equals sign and no guarantees are made 
concerning leading or trailing whitespace. Usually the object names should be the same as the 
names in your graph file, unless name conversion is being used (see the section on name 
resolution in section  

5. Building and Storing Interaction Networks). Edge names are all of the form  

sourceName (edgeType) targetName  

Note that this format is different from the specification of interactions in the SIF file format. To 
be explicit: in a SIF file, an interaction looks like 



sourceName edgeType targetName  

To set an attribute for the edge defined by this interaction, the matching line in a attributes file 
should look like  

sourceName (edgeType) targetName = value  

(Yes, this is confusing; we're planning on fixing this in the next file format update for 
Cytoscape). 

To specify lists of values, use the following syntax:  

listAttributeName class=java.lang.String 
firstObjectName = (firstValue::secondValue::thirdValue) 
secondObjectName = (onlyOneValue)  

This defines an attribute which is a list of Strings. The first object has three strings, and thus 
three elements in its list, while the second object has a list with only one member. In the case of a 
list every attribute value should be specified as a list, and every member of the list should be of 
the same class. Again, the class will be inferred if it is not specified in the header line.  Lists are 
not supported by the visual mapper, so can’t be mapped to visual attributes. 

 

8. Navigation and Layout 
 
BASIC FEATURES: 
Use the zooming buttons located on the toolbar to zoom in / out of the interaction network shown 
in the current network display.  Zoom icons are detailed below: 
 
 

 
 
From Left to Right: 

•  Zoom Out 
•  Zoom In 
•  Zoom Selected Region 
•  Zoom out to Display all of Current Network 

 
 
 
You can also zoom in/out by holding down the right mouse button and moving the mouse to the 
right (zoom in) or left (zoom out). 
 



Use the left mouse button to select a node (hold down the Shift key to select more than one 
node).  Use the right mouse button to launch a context sensitive menu with additional 
information about the node that was clicked on. 
 



NETWORK LAYOUT: 
To lay out your network using a Spring Embedded Layout, select Layout  Apply Spring 
Embedded Layout from the main menu.  Sample screenshot is provided below: 
 

 
 

Figure:  Applying the Spring Embedded Layout to a sample network. 
 

9.  Visual Styles 
 
With the Cytoscape Visual Style feature, you can easily customize the visual appearance of your 
network. For example, you can specify a default color and shape for all nodes, use specific line 
types to indicate different types of interactions, or visualize gene expression data using a color 
gradient.  All these features are available by selecting Visualization  Set Visual Properties 
from the main menu or clicking on the color wheel in the main button bar menu. 
 

9.1  Introduction to Visual Styles 
 
The Cytoscape distribution you have downloaded includes three predefined visual styles to get 
you started.  To demonstrate these styles, try out the following example: 
 



•  Load a sample network:  From the main menu, select File  Load  Graph, and select 
sampleData/galFiltered.sif. 

 
•  Load a sample set of expression data:  From the main menu, select File  Load  

Expression Matrix File, and select sampleData/galExpData.pvals. 
 
By default, the Visual Style labeled “default” will be automatically applied to your network.  
This default style has a blue background, circular pink nodes, and blue edges (see sample 
screenshot below).   
 

 
 

Figure:  Using the default Visual Style. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
You can flip through different visual styles by making a selection from the Visual Style pull 
down menu.  For example, if you select “Sample1”, a new visual style will be applied to your 

Visual Style  
Pull-Down Menu 

The vizmap.props File:  All Cytoscape Visual Style settings are automatically stored in a file 
called vizmap.props.  Upon startup, Cytoscape will first try to locate the vizmap.props file in 
the “user home” directory. For example, on Windows XP, this corresponds to the user 
“Documents and Settings” directory, e.g. c:\Documents and Settings\cerami. On Linux or Mac 
OS X, this corresponds to the user home directory, e.g. /Users/cerami or ~. If no vizmap.props 
file is found in the user’s home directory, Cytoscape will next search the current local 
directory. Note: vizmap.props is a text file that can be edited, but it is not recommended.  If 
you do edit this file, make sure it is saved in text format and not that of any other editor. 

[!] If you are upgrading from Cytoscape 1.1:   If you are upgrading from Cytoscape 1.1, 
you may have an existing vizmap.props file in your home directory.  If this is the case, you 
will not have the sample1 and sample2 visual styles described below.  To get around this issue, 
backup your current vizmap.props file to safe place, and copy the new Cytoscape 2.1 
vizmap.props file to your home directory. 



network, and you will see a green background and round blue nodes.  Additionally, protein-DNA 
interactions (specified with the label: pd) are drawn with dashed edges, whereas protein-protein 
interactions (specified with the label: pp) are drawn with drawn with a light yellow color which 
is difficult to discern on the green background (see sample screenshot below). The background 
can be changed through the Visualization menu.   
 

 
 

Figure:  Using the Sample1 Visual Style.  Protein-Protein interactions (solid lines) are now distinguishable from Protein-DNA 
interactions (dashed lines). 

 
Finally, if you select “Sample2”, gene expression values for each node will be colored along a 
color gradient between red and green (where red represents a low expression ratio, and green 
represents a high expression ratio - with thresholds set for the gal1RGexp experiment bundled 
with Cytoscape in the sampleData/galExpData.pvals file).  See sample screenshot below: 
 

Visual Style  
Pull-Down Menu 



 
 

Figure:  Using the Sample2 Visual Style. Gene expression values are now displayed along a red/green color gradient. 

 

9.2  Visual Attributes, Graph Attributes and Visual Mappers 
 
The Cytoscape Visual Mapper has three core components:  visual attributes, graph attributes and 
visual mappers: 
 

•  A visual attribute is any visual setting that can be applied to your network.  For example, 
you can change all nodes to squares by setting the node shape visual attribute. 

 
•  A graph attribute is any attribute associated with a node or an edge.  For example, each 

edge in a network may be associated with a label, such as “pd” (protein-DNA 
interactions), or “pp” (protein-protein interactions). 

 
•  A visual mapper maps graph attributes to visual attributes.  For example, a visual mapper 

can map all protein-DNA interactions to the color blue, and all protein-protein 
interactions to the color red. 

 
Cytoscape includes a large number of visual attributes.  These are summarized in the tables 
below. 

Visual Style  
Pull-Down Menu 



 
Visual Attributes Associated with Nodes: 

 
•  Node Color 
 
•  Node Border Color 
 
•  Node Border Type.  The following options are available: 
 

      
 
•  Node Shape.  The following options are available: 

 

            
 

•  Node Size:  width and height of each node. 
 
•  Node Label:   the text label for each node. 
 
•  Node Font:  node font and size. 
 

 
Visual Attributes Associated with Edges: 

 
•  Edge Color 
 
•  Edge Line Type.  The following options are available: 
 

      
 
•  Edge Source Arrow.  The following options are available: 

 

           
 

•  Edge Target Arrow.  The following options are available: 
 

     
 
•  Edge Label:   the text label for each edge. 
 
•  Edge Font:  edge font and size. 
 



 
Global Visual Properties: 

 
•  Background Color 
 

 
For each visual attribute, you can specify a default value or define a visual mapping.  Cytoscape 
currently supports three different types of visual mappers: 
 

•  Passthrough Mapper:  graph attributes are passed directly through to visual attributes.  
A passthrough mapper only works for node / edge labels.  For example, a passthrough 
mapper can draw the common gene name on all nodes. 

 
•  Discrete Mapper:  discrete graph attributes are mapped to discrete visual attributes.  For 

example, a discrete mapper can map all protein-protein interactions to the color blue. 
 
•  Continuous Mapper: continuous graph attributes are mapped to visual attributes.  

Depending on the visual attribute, there are two types of continuous mappers: 
 

o continuous to continuous mapper:  for example, you can map a continuous 
value (0..1) to a color gradient (red..green) or node/font size (10..100). 

 
o continuous to discrete mapper:  for example, all values below 0 are mapped to 

square nodes,  and all values above 0 are mapped to circular nodes.  However, 
there is no way to smoothly morph between circular nodes and square nodes.  

 
The matrix below shows visual mapper support for each visual property.  



 
 

Pa
ss

th
ro

ug
h 

M
ap

pe
r 

D
is

cr
et

e 
M

ap
pe

r 

C
on

tin
uo

us
 

M
ap

pe
r 

Node Properties    
  Node Color        ●      ●  
  Node Border Color        ●      ●  
  Node Border Type        ●       ◗ 
  Node Shape        ●       ◗ 
  Node Size        ●      ●  
  Node Label   ●      ●       ◗ 
  Node Font Family        ●       ◗ 
  Node Font Size        ●      ●  
Edge Properties    
  Edge Color        ●      ●  
  Edge Line Type        ●       ◗ 
  Edge Source Arrow        ●       ◗ 
  Edge Target Arrow        ●       ◗ 
  Edge Label   ●      ●       ◗ 
  Edge Font Family        ●       ◗ 
  Edge Font Size        ●      ●  

 
Legend 
   Mapping is not supported for specified visual property. 
  ●  Mapping is fully supported for specified visual property.   
  ◗ Mapping is partially supported for specified visual property.  Support for 

“continuous to continuous” mapping is not supported. 
 
 

9.3  Tutorial:  Creating a New Visual Style 
 
To create a new visual style, select Visualization  
Set Visual Properties from the main menu, or select 
the color wheel icon in the main button bar.  You will 
now see a new Visual Styles dialog box (shown at 
right.) 
 
 



 
 
Click the New button, and enter a name for your new visual style 
when prompted.  Then click the Define button.  You will now 
see the main Visual Styles Properties dialog box (shown at right.) 
 
From this dialog box, you can flip between Node Attributes, 
Edge Attributes, and Global Defaults.  You can also specify 
default values for any visual property, or define a new custom 
mapping. 
 
For example, to set the default node shape to triangles, select 
Node Attributes  Node Shape.  Then, click the “Change 
Default” button, and select the Triangle icon from the selection 
list.  
 

Applying Changes to the Network 
 
To apply your visual style to your network, hit the “Apply to Graph”  
button, available in the bottom of the dialog panel. 
 

Saving a Visual Style 
 
When you exit Cytoscape, new visual styles or newly modified visual styles will automatically 
be saved in the vizmap.props file.  You can therefore create a new visual style and apply it to all 
future networks. 
 
 
 
 

Select the Apply button to apply
your newly revised style to the
graph.

Create a new mapper. 

Visual Property Categories 



9.4  Tutorial:  Creating a New Visual Style with a Discrete 
Mapper 
 
The following tutorial demonstrates how to create a new visual 
style with a discrete mapper.  The goal is to draw Protein-DNA 
interactions with blue edges, and Protein-Protein interactions with 
red edges. 
 

•  Load a sample network:  From the main menu, select File 
 Load  Graph, and select sampleData/galFiltered.sif. 

•  Select Visualization  Set Visual Properties.  
•  Select “New” to create a new Visual Style.  Name your 

new style:  “Sample3”. 
•  Click the “Define” button to define the newly created 

Visual Style. 
•  In the “Set Visual Properties” Dialog box, select Edge 

Attributes  Edge Color. 
•  Click the New button in the mapping panel.  
•  You will be prompted to select a mapping type: 

passthrough mapper, discrete mapper or continuous mapper (for an overview of the 
differences between these mappers, please refer back to section 8.2.)  Select “discrete 
mapper”, and enter a descriptive name.  For example, enter:  “InteractionTypeColor”.  

•  From the “Map Attribute” pull-down menu, select “interaction.”  You should now  see 
two buttons, one for pd (Protein-DNA interactions), and one for pp (Protein-Protein 
interactions). 

•  Click the “pd” button and select a blue 
color. 

•  Click the “pp” button and select a red 
color. 

•  Click the “Apply to Graph” button. 
 
You network should now show “pd” interactions 
in blue, and “pp” interactions in red.  Sample 
screenshot is provided at right 
 
 
 
 
 



9.5  Tutorial:  Visualizing Expression Data on a Network 
 
The following tutorial demonstrates how to create a new continuous mapper.  The goal is to 
superpose gene expression data onto a network, and to display gene expression values along a 
color gradient. 
 

•  Load a sample network:  From the main menu, 
select File  Load  Graph, and select 
sampleData/galFiltered.sif. 

•  Load a sample set of expression data:  From the 
main menu, select File  Load  Expression 
Matrix File, and select 
sampleData/galExpData.pvals. 

•  Select Visualization  Set Visual Properties.  
•  Select “New” to create a new Visual Style.  Name 

your new style:  “Sample4”. 
•  Click the “Define” button to define the newly 

created Visual Style. 
•  In the “Set Visual Properties” Dialog box, select 

Node Attributes  Node Color. 
•  Click the New button in the mapping panel.  
•  You will be prompted to select a mapping type: 

passthrough mapper, discrete mapper or 
continuous mapper (for an overview of the 
differences between these mappers, please refer back to section 8.2.)  Select “continuous 
mapper”, and enter a descriptive name.  For example, enter:  “ColorGradient”. 

•  From the “Map Attribute” pull-down menu, select “gal1RGexp.” 
•  Click the “Add Point” button twice to add two data points. 
•  Set the first point to “-1”, Below = Yellow, Equal = White. 
•  Set the second point to “2”, Equal = Red, Above = Black. 
•  Click the “Apply to Graph” button. 

 
This visual mapper will set all nodes with a 
gal1RGexp value less than –1 to Yellow, and 
all nodes with a gal1RGExp value greater than 
2 to Black.  Additionally, all values between –
1 and 2 will be painted with a white/red color 
gradient.  Sample screenshot is shown at right. 
 
 
 
 
 
 



10. Filters 
 The Cytoscape Filter plugin, which is packaged with the official Cytoscape 2.1 release 
and is active by default, allows for a wide variety of fine-tuned filtering on node and edge 
attributes loaded onto Cytoscape networks. For example, you can easily select all the nodes 
whose name contains a specific pattern that you define. Example filters are shipped with the 
plugin to get started. Base filters only operate on String and Scalar data i.e. any names, 
descriptions or numerical node or edge attributes can be filtered. A Boolean filter is also 
available that can be used to combine any number of existing filters in logical combinations, so 
as you add filters, the plugin becomes more powerful. 
 
Using the Plugin 
 
 If the Filter plugin is loaded, then you should see a menu called “Filters” and the filter 
icon: 
 

 
 
 Activate the filters using either the “Use Filters” menu entry or the large filters icon (red 
and green arrows). The filters dialog looks like the following (without the colors...) 

 
As for the colors: 
 
The Red Box: Each available filter has its own tab.  The default filter is Node Interactions 
(which allows you to filter nodes, based on the edges that they are connected to), Boolean  
(which allows you to combine filters together using AND, OR and XOR operators), Topology 
(which allows you to filter nodes based on the number of edges to other nodes), Numerical 
(which allows for >, =, and < filtering operations on numerical attributes) and String (which 
allows for filtering using * and ? as wildcards). 
 
The Purple Box: An existing or newly created filter can be edited in this area.  Each filter type 
has its own user interface for editing. 



 
The Orange Box: All available filters are shown in this list. Initially, this list will contain sample 
filters, but as you create more, they will be added here. 
 
The Cyan Box: Pressing “Add Current Filter” adds the filter being edited to the “Available 
Filters” box, and “Remove Selected Filter” deletes the currently selected filter. 
 
The Green Box: This area contains default actions for a given filter. These specify how 
Cytoscape should display the network components (nodes and edges) that pass a filter. You can 
choose to have Cytoscape select the nodes and/or edges that pass a given filter or alternatively 
have Cytoscape hide the nodes and/or edges that do not pass a given filter. A useful operation is 
to have a filter select a set of nodes and then send these nodes to a new network (through the 
Select menu). 
 
Creating Filters 
 
 The important thing to realize when creating a filter is that the filter does not do anything 
by itself. Once created, the filter must be run. 
 
String Filter: 
 

 
The String Filter allows you to choose to Filter Node or Edges, and gives you a list of available 
attributes to search for each (those attributes that are loaded on the network). If you have the 
filters dialog box active and you load new graph attributes, you can click the update button to 
refresh the attribute list. Search terms are entered in the text box at the bottom.  For example to 
match any Node whose canonicalName starts with “YDL” you would select “Node”, 
“canonicalName” and type “YDL*”. The * is important as it matches anything for any number of 
characters after YDL. If you want to be more specific and only select Nodes whose 
canonicalName starts with YDL00 followed by any other two characters, you would type 
“YDL00??”.  The “?” denotes any single character, while the “*” represents zero or more 
characters. Full regular expression searching is supported, although is not covered here. Once the 
filter is defined, it will be assigned a default descriptive name, although this name can be edited. 
Pressing the “Add Current Filter” button will add your filter to the list of available filters to the 
left. 
 



Numerical Filter: 
 

 
The Numerical Filter also allows you to filter Nodes or Edges, and presents you with a list of 
available attributes.  This filter matches greater-than, less-than, or equal-to a number you type in 
the search box. See the String filter description for more information. 

 
Boolean Filter: 
 
The Boolean filter allows you to define a new filter that is a logical combination of existing 
filters.  Available filters are displayed (although the list can be refreshed by clicking the “Update 
List of Filters” button).  By selecting one or more filters, you can then choose whether Nodes or 
Edges pass “ALL” (AND), “AT LEAST ONE” (OR), or “ONLY ONE” (XOR) of the selected 
filters.  Once created Boolean filters can then themselves be combined using the Boolean filter to 
create arbitrarily complex logical combinations of filters. Note that unlike the String and 
Numerical Filters, Boolean Filters will need to be assigned a name manually. 
 
Once created, filters are saved for future sessions, as long as you exit Cytoscape normally via the 
exit command in the File menu (i.e. not via ctrl-c on Linux). 
 
Running filters 
Any available filter can be run by selecting a visualization action for Cytoscape (how your filter 
results should be displayed) and pressing the ‘Go!’ button. 
 



The Network +/- Filter Feature 
The “Network +/-” dialog is available from the Filters menu. It allows you to create new 
networks and add/remove nodes to/from existing networks based on available filters. The dialog 
box is shown below: 
 

 
 
The Attribute Browser Filter Feature 
The “Attributes Browser if passed Filter” item from the Data menu allows you to see the normal 
Cytoscape graph attribute browser for all nodes or edges that pass a given filter. 
 

 
Once clicked, the following dialog box appears to allow you to choose an available filter: 
 



 
Clicking on the Browser button will open the graph attributes browser.  
 
The Diff Filter Feature 
The Diff feature, accessible from the Data menu shown above, allows you to see which nodes or 
edges pass each of two selected filters and which nodes or edges those filters don’t have in 
common (i.e. it shows the differences between two filters). This is useful for quickly comparing 
two filters. You can then create a new network that contains the differences (“Create Network” 
button) or create a new filter that selects the differences (“Create Filter” button). 
 

 
The same functionality is available here for networks. You can select any two networks that are 
loaded and create a new network from their differences. 
 



11. Acknowledgements  
 
Cytoscape is built with a number of open source 3rd party Java libraries.  The Cytoscape team 
gratefully acknowledges the following libraries: 
 

•  The Colt Distribution: Open Source Libraries for High Performance Scientific and 
Technical Computing in Java.  Information is available at: 
http://hoschek.home.cern.ch/hoschek/colt/. 

 
•  GNU Getopt in Java.  Information is available at: 

http://www.urbanophile.com/arenn/hacking/download.html. 
 
•  Graph INterface librarY a.k.a. GINY.  Information is available at: 

http://csbi.sourceforge.net/. 
 
•  JDOM.  Information is available at: http://www.jdom.org. 
 
•  JUnit.  Information is available at: http://junit.org. 
 
•  JGoodies Looks.  Information is available at: 

http://www.jgoodies.com/freeware/looks/index.html. 
 
•  Piccolo.  Information is available at: http://www.cs.umd.edu/hcil/jazz/. 
 
•  Type-Specific Collections Library, from Sosnoski Software Solutions, Inc.  Information 

is available at: http://www.sosnoski.com/opensrc/tclib/. 
 
•  Xerces Java XML parser.  Information is available at: http://xml.apache.org/xerces-j/. 
 
This product includes software developed by the Apache Software Foundation 
(http://www.apache.org/). 
 
This product includes software developed by the JDOM Project (http://www.jdom.org/). 
 



 

Appendix: Annotation Server Format 
This section for advanced users. 

Introduction 
Annotation in Cytoscape is stored as a set of ontologies (e.g. the Gene Ontology), a set of 
ontology controlled vocabulary term annotations for the genes from a given organism and a 
synonym table for gene names. For example, using the Gene Ontology, the Saccharomyces 
Cerevisiae GAL4 gene’s biological process is described as “regulation of transcription”, to 
which GO has assigned the number 45449 (a GO ID). You can see below that “regulation of 
transcription” is a subcategory of “transcription”, which is a subcategory of “nucleobase, 
nucleoside, nucleotide and nucleic acid metabolism”, etc. 
 
GO 8150  biological_process  
  GO 7582  physiological processes 
    GO 8152  metabolism 
      GO 6139  nucleobase, nucleoside, nucleotide and nucleic acid metabolism 
        GO 6350  transcription 
         GO 45449  regulation of transcription 
 
Cytoscape can use this ‘hierarchical’ ontology to annotate recognized genes, provided the user 
chooses a level of the hierarchy to use for a given set of annotations. The ontology provided to 
Cytoscape does not have to be hierarchical, but if it is not, there is no real advantage to storing 
annotations this way compared to just storing the annotation terms in a node attribute file. 
 
The annotation server (originally called the biodata server) is a Cytoscape feature which allows 
you to load, navigate, and assign annotation terms to nodes in a network. 
 
There are two modes in which an annotation server can be run: 

1. As an in-process version of the same code, that runs in the same Java Virtual Machine as 
Cytoscape. This is the default for the official release of Cytoscape. 

2. As a separately running program, an RMI server with which Cytoscape communicates. 
 
The RMI server is especially useful if there are multiple Cytoscape users all running in the same 
location, using the same annotation: a group of yeast biologists, for example, all within the same 
institute or if a group studies several organisms (yeast, human, mouse ...). The RMI server is a 
little bit of trouble to set up, however, and so many people will elect to use the in-process server. 
 

Building your own annotation files 
The annotation server requires that the gene annotations, and associated ontology on controlled 
vocabulary terms, follow a simple format. This simple format was chosen because it is efficient 
to parse and easy to use. 
 



The flat file formats are explained below: 
 

The Ontology Format 
By example (the Gene Ontology - GO):  
 
(curator=GO) (type=all) 
0003673 = Gene_Ontology 
0003674 = molecular_function  [partof: 0003673 ] 
0008435 = anticoagulant [isa: 0003674 ] 
0016172 = antifreeze [isa: 0003674 ] 
0016173 = ice nucleation inhibitor [isa: 0016172 ] 
0016209 = antioxidant [isa: 0003674 ] 
0045174 = glutathione dehydrogenase (ascorbate) [isa: 0009491 0015038 0016209 0016672 ] 
0004362 = glutathione reductase (NADPH) [isa: 0015038 0015933 0016209 0016654 ] 
0017019 = myosin phosphatase catalyst  [partof: 0017018 ] 

... 

 
A second example (KEGG pathway ontology): 
 
(curator=KEGG) (type=Metabolic Pathways) 
90001 = Metabolism 
80001 = Carbohydrate Metabolism [isa: 90001 ] 
80003 = Lipid Metabolism [isa: 90001 ] 
80002 = Energy Metabolism [isa: 90001 ] 
80004 = Nucleotide Metabolism [isa: 90001 ] 
80005 = Amino Acid Metabolism [isa: 90001 ] 
80006 = Metabolism of Other Amino Acids [isa: 90001 ] 
80007 = Metabolism of Complex Carbohydrates [isa: 90001 ] 
... 

 
The format has three required features: 

1. The first line contains two parenthesized assignments, for curator and type. In the GO 
example above, the ontology file (which is created from the XML GO provides) nests all 
three specific ontologies (molecular function, biological process, cellular component) 
below the 'root' ontology, named 'Gene_Ontology'. 
 
(type=all) 

 
tells you that all three ontologies are included in that file. 
 

2. Following the mandatory title line, there are one or more category lines, each with the 
form: 
 
number0 = name [isa:|partof: number1 number2 ...] 
 
'isa' and 'partof' are terms used in GO; they describe the relation between parent and child 
terms in the ontology hierarchy. 
 

3. The trailing blank before each left square bracket is not required; it is an artifact of the 
python script that creates these files. 

 



The Annotation Format 
 
By example (from the GO biological process annotation file):  
 
(species=Saccharomyces cerevisiae) (type=Biological Process) (curator=GO) 
YMR056C = 0006854 
YBR085W = 0006854 
YJR155W = 0006081 
... 
 
and from KEGG: 
 
(species=Mycobacterium tuberculosis) (type=Metabolic Pathways) (curator=KEGG) 
RV0761C = 10 
RV0761C = 71 
RV0761C = 120 
RV0761C = 350 
RV0761C = 561 
RV1862 = 10 
... 
 
The format has these required features: 

1. The first line contains three parenthesized assignments, for species, type and curator. In 
the example just above, the annotation file (which we create for budding yeast from the 
flat text file maintained by SGD for the Gene Ontology project, and available both at 
their web site and at GO's) shows three yeast ORFs annotated for biological process, with 
respect to GO, described (further above). 
 

2. Following the mandatory title line, there are one or more annoation lines, each with the 
form: 
 
canonicalName = ontologyTermID 
 

3. Once loaded, this annotation (along with accompanying ontology) can be assigned to 
nodes in a Cytoscape network. For this to work, the species type of the node must 
agree exactly with the species named on the first line of the annotation file. The 
canonicalName of your node must exactly match the canonicalName present in the 
annotation file. If you don’t see the expected results when using this feature of 
Cytoscape, check this again, as getting either of these wrong is a common mistake. 

 

Load Data In-Process  
The easiest way to make annotation available to Cytoscape is by loading annotation into an in-
process annotation server. This is the default for the official release of Cytoscape. 

The Annotation Manifest  
You must first create a text file to specify the files you want Cytoscape to load. Here is an 
example, from a file which (for convenience) we usually call “manifest” 
 



ontology=goOntology.txt 
annotation=yeastBiologicalProcess.txt 
annotation=yeastMolecularFunction.txt 
annotation=yeastCellularComponent.txt 
 

Use the Cytoscape -b command line argument to specify the annotation manifest file to read (e.g. 
-b manifest).  Please note that the -s switch, which sets the default species for your data is 
required to exactly match the species named in any annotation file you wish to use. 
 

Getting and Reformatting GO Data  
The Gene Ontology (GO) project is a valuable source of annotation for the genes of many 
organisms. In this section we will explain how to:  

1. Obtain the GO ontology file  
2. Reformat it into the simpler flat file Cytoscape uses  
3. Obtain an annotation file (we illustrate with yeast and human annotation)  
4. Reformat the annotation files into the simple Cytoscape format 

Obtain the GO ontology file 
Go to the GO XML FTP (ftp://ftp.geneontology.org/pub/go/xml/) page. Download the latest go-
YYYYMM-termdb.xml.gz file. 
 
Reformat GO XML ontology file into a flat file 
  gunzip go-YYYYMM-termdb.xml.gz 
  python parseGoTermsToFlatFile.py  go-YYYYMM-termdb.xml > goOntology.txt 

 
(See below for Python script listing) 
 
Obtain the 'association' file for your organism 
GO maintains a list of association files for many organisms; these files associate genes with GO 
terms. The next step is to get the file for the organism/s you are interested in, and parse it into the 
form Cytoscape needs. A list of files may be seen at 
http://www.geneontology.org/GO.current.annotations.shtml. The rightmost column contains 
links to tab-delimited files of gene associations, by species. Choose the species you are interested 
in, and click 'Download'. 
  
Let's use 'GO Annotations @ EBI Human' as an example. After you have downloaded and 
saved the file, look at the first few lines: 
 
SPTR    O00115  DRN2_HUMAN              GO:0003677      PUBMED:9714827  TAS             F       
Deoxyribonuclease II precursor  IPI00010348     protein taxon:9606              SPTR 
SPTR    O00115  DRN2_HUMAN              GO:0004519      GOA:spkw        IEA             F       
Deoxyribonuclease II precursor  IPI00010348     protein taxon:9606        20020425      SPTR 
SPTR    O00115  DRN2_HUMAN              GO:0004531      PUBMED:9714827  TAS             F       
Deoxyribonuclease II precursor  IPI00010348     protein taxon:9606              SPTR 

... 

Note that line wrapping has occurred here, so each line of the actual file is wrapped to two lines. 



The goal is to create from these lines the following lines:  

(species=Homo sapiens) (type=Molecular Function) (curator=GO) 
IPI00010348 = 0003677 
IPI00010348 = 0004519 
IPI00010348 = 0004531 
... 

or  
(species=Homo sapiens) (type=Biological Process) (curator=GO) 
NP_001366 = 0006259 
NP_001366 = 0006915 
NP_005289 = 0007186 
NP_647593 = 0006899 
... 

The first sample contains molecular function annotation for proteins, and each protein is 
identified by its IPI number.  IPI is the International Protein Index, which maintains cross 
references to the main databases for human, mouse and rat proteomes.  

The second sample contains biological process annotation, and each protein is identified by its 
NP (RefSeq) number.  

These two naming systems, IPI and RefSeq, are two of many that you can use for canonical 
names when you run Cytoscape. For budding yeast, it is much easier: the yeast community 
always uses standard ORF names, and so Cytoscape uses these as canonical names. For human 
proteins and genes, there is no such single simple standard. See section  

5. Building and Storing Interaction Networks for more information. 

The solution (for those working with human genes or proteins) is, once you have downloaded the 
annotations file, to:  

1. Decide which naming system you want to use.  
2. Download ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/HUMAN/xrefs.goa. This cross-

reference file, when used strategically, allows you to create Cytoscape-compatible 
annotation files in which the canonical name is the one most meaningful to you. 

3. Examine xrefs.goa to figure out which column contains the names you wish to use.  
4. Make a very slight modification to the python script described below, and then  
5. Run that script, supplying both xrefs.goa and that annotation file as arguments. 

Here are a few sample lines from xrefs.goa:  
SP O00115 IPI00010348  ENSP00000222219; NP_001366; 
 BAA28623;AAC77366;AAC35751;AAC39852;BAB55598;AAB51172;AAH10419; 2960,DNASE2
 1777,DNASE2 
SP O00116 IPI00010349  ENSP00000324567;ENSP00000264167; NP_003650; 
 CAA70591; 327,AGPS 8540,AGPS 
SP O00124 IPI00010353  ENSP00000265616;ENSP00000322580; NP_005662; 
 BAA18958;BAA18959;AAH20694;  7993,D8S2298E 
... 

 



Note that line wrapping has occurred here – each line in this example starts with the letters SP.  
See the README file for more information 
(ftp://ftp.ebi.ac.uk/pub/databases/GO/goa/HUMAN/README) 
 
Finally, run the script to create your three annotation files for human proteins: 

•  bioproc.anno (GO biological process annotation)  
•  molfunc.anno (GO molecular function annotation)  
•  cellcomp.anno (GO cellular component annotation)  

using the supplied python script. It may be necessary to modify this script slightly if RefSeq 
identifiers are not used as canonical names. 
 
python parseAssignmentsToFlatFileFromGoaProject.py gene_association.goa_human xrefs.goa  

(See below for Python script listing) 
 
Python script examples: 
These scripts, described above require Python version 2.2 or later. 
 
Script 1 - parseGoTermsToFlatFile.py 
# parseGoTermToFlatFile.py:  translate a GO XML ontology file into a simpler 
#  Cytoscape flat file 
#----------------------------------------------------------------------------------- 
# RCS: $Revision: 1.3 $   $Date: 2003/05/18 00:38:43 $ 
#----------------------------------------------------------------------------------- 
import re, pre, sys 
#----------------------------------------------------------------------------------- 
def flatFilePrint (id, name, isaIDs, partofIDs): 
  isa = '' 
  if (len (isaIDs) > 0): 
    isa = '[isa: ' 
    for isaID in isaIDs: 
      isa += isaID 
      isa += ' ' 
    isa += ']' 
 
  partof = '' 
  if (len (partofIDs) > 0): 
    partof = '[partof: ' 
    for partofID in partofIDs: 
      partof += partofID 
      partof += ' ' 
    partof += ']' 
 
  result = '%s = %s %s %s' % (id, name, isa, partof) 
  result = result.strip () 
  if (result == 'isa = isa' or result == 'partof = partof'): 
    print >> sys.stderr, 'meaningless term: %s' % result 
  else: 
    print result 
#----------------------------------------------------------------------------------- 
if (len (sys.argv) != 2): 
  print 'usage:  %s <someFile.xml>' % sys.argv [0] 
  sys.exit (); 
 
inputFilename = sys.argv [1]; 
 
print >> sys.stderr,  'reading %s...' % inputFilename 
text = open (inputFilename).read () 
print >> sys.stderr,  'read %d characters' % len (text) 
 



regex = '<go:term .*?>(.*?)</go:term>'; 
cregex = pre.compile (regex, re.DOTALL)   # . matches newlines 
 
m = pre.findall (cregex, text) 
print >> sys.stderr, 'number of go terms: %d' % len (m) 
 
 
regex2 = '<go:accession>GO:(.*?)</go:accession>.*?<go:name>(.*?)</go:name>' 
cregex2 = re.compile (regex2, re.DOTALL) 
 
regex3 = '<go:isa\s*rdf:resource="http://www.geneontology.org/go#GO:(.*?)"\s*/>' 
cregex3 = re.compile (regex3, re.DOTALL) 
 
regex4 = '<go:part-of\s*rdf:resource="http://www.geneontology.org/go#GO:(.*?)"\s*/>' 
cregex4 = re.compile (regex4, re.DOTALL) 
 
goodElements = 0 
badElements = 0 
 
print '(curator=GO) (type=all)' 
for term in m: 
  m2 = re.search (cregex2, term) 
  if (m2): 
    goodElements += 1; 
    id = m2.group (1) 
    name = m2.group (2) 
    isaIDs = [] 
    m3 = re.findall (cregex3, term); 
    for ref in m3: 
      isaIDs.append (ref) 
    m4 = re.findall (cregex4, term); 
    partofIDs = [] 
    for ref in m4: 
      partofIDs.append (ref) 
    flatFilePrint (id, name, isaIDs, partofIDs) 
  else: 
    badElements += 1; 
    print >> sys.stderr, 'no match to m2...' 
    print >> sys.stderr, "---------------\n%s\n------------------" % term 
 
 
print >> sys.stderr,  'goodElements %d' % goodElements 
print >> sys.stderr, 'badElements %d' % badElements 
 
#-------------------------------------- 

 
Script 1 - parseAssignmentsToFlatFileFromGoaProject.py 
#!/tools/bin/python 
import sys 
#----------------------------------------------------------------------------------- 
def fixCanonicalName (rawName): 
# for instance, trim 'YBR085W|ANC3' to 'YBR085W' 
  bar = rawName.find ('|') 
  if (bar < 0): 
    return rawName 
  return rawName [:bar] 
 
#----------------------------------------------------------------------------------- 
def fixGoID (rawID): 
 
  bar = rawID.find (':') + 1 
  return rawID [bar:] 
 
#----------------------------------------------------------------------------------- 
def readGoaXrefFile (filename): 
 
  lines = open (filename).read().split ('\n') 
  result = {} 
  for line in lines: 
    if (len (line) < 10): 



      continue 
    tokens = line.split ('\t') 
    ipi = tokens [2] 
    np = tokens [5] 
    semicolon = np.find (';') 
    if (semicolon >= 0): 
      np = np [:semicolon] 
    if (len (ipi) > 0 and len (np) > 0): 
      result [ipi] = np 
 
  return result 
 
#----------------------------------------------------------------------------------- 
if (len (sys.argv) != 3): 
  print 'error!  parse   <gene_associations file from GO> <goa xrefs file> ' 
  sys.exit () 
 
associationFilename = sys.argv [1]; 
xrefsFilename = sys.argv [2] 
species = 'Homo sapiens' 
 
ipiToNPHash = readGoaXrefFile (xrefsFilename) 
tester = 'IPI00099416' 
print 'hash size: %d' % len (ipiToNPHash) 
print 'test map: %s -> NP_054861: %s ' % (tester, ipiToNPHash [tester]) 
 
bioproc = open ('bioproc.txt', 'w') 
molfunc = open ('molfunc.txt', 'w') 
cellcomp = open ('cellcomp.txt', 'w') 
 
bioproc.write ('(species=%s) (type=Biological Process) (curator=GO)\n' % species) 
molfunc.write ('(species=%s) (type=Molecular Function) (curator=GO)\n' % species); 
cellcomp.write ('(species=%s) (type=Cellular Component) (curator=GO)\n' % species); 
 
lines=open(associationFilename).read().split('\n') 
sys.stderr.write ('found %d lines\n' % len (lines)) 
  
for line in lines: 
  if (line.find ('!') == 0 or len (line) < 2): 
    continue 
  tokens = line.split ('\t') 
  goOntology = tokens [8] 
  goIDraw = tokens [4] 
  goID = goIDraw.split (':')[1] 
  ipiName = fixCanonicalName (tokens [10]) 
  if (len (ipiName) < 1): 
    continue 
   
      
  if (not ipiToNPHash.has_key (ipiName)): 
    continue 
  refseqName = ipiToNPHash [ipiName] 
  printName = refseqName 
  #printName = ipiName 
  if (ipiName == tester): 
    print '%s (%s) has go term %s' % (tester, printName, goID) 
  if (goOntology == 'C'): 
    cellcomp.write ('%s = %s\n' % (printName, goID)) 
  elif (goOntology == 'P'): 
    bioproc.write ('%s = %s\n' % (printName, goID)) 
  elif (goOntology == 'F'): 
    molfunc.write ('%s = %s\n' % (printName, goID)) 
#----------------------------------------------------------------------------------- 

 



Appendix: GNU Lesser General Public License 
 
    GNU LESSER GENERAL PUBLIC LICENSE 
         Version 2.1, February 1999 
 
 Copyright (C) 1991, 1999 Free Software Foundation, Inc. 
     59 Temple Place, Suite 330, Boston, MA  02111-1307  USA 
 Everyone is permitted to copy and distribute verbatim copies 
 of this license document, but changing it is not allowed. 
 
[This is the first released version of the Lesser GPL.  It also counts 
 as the successor of the GNU Library Public License, version 2, hence 
 the version number 2.1.] 
 
       Preamble 
 
  The licenses for most software are designed to take away your 
freedom to share and change it.  By contrast, the GNU General Public 
Licenses are intended to guarantee your freedom to share and change 
free software--to make sure the software is free for all its users. 
 
  This license, the Lesser General Public License, applies to some 
specially designated software packages--typically libraries--of the 
Free Software Foundation and other authors who decide to use it.  You 
can use it too, but we suggest you first think carefully about whether 
this license or the ordinary General Public License is the better 
strategy to use in any particular case, based on the explanations below. 
 
  When we speak of free software, we are referring to freedom of use, 
not price.  Our General Public Licenses are designed to make sure that 
you have the freedom to distribute copies of free software (and charge 
for this service if you wish); that you receive source code or can get 
it if you want it; that you can change the software and use pieces of 
it in new free programs; and that you are informed that you can do 
these things. 
 
  To protect your rights, we need to make restrictions that forbid 
distributors to deny you these rights or to ask you to surrender these 
rights.  These restrictions translate to certain responsibilities for 
you if you distribute copies of the library or if you modify it. 
 
  For example, if you distribute copies of the library, whether gratis 
or for a fee, you must give the recipients all the rights that we gave 
you.  You must make sure that they, too, receive or can get the source 
code.  If you link other code with the library, you must provide 
complete object files to the recipients, so that they can relink them 
with the library after making changes to the library and recompiling 
it.  And you must show them these terms so they know their rights. 
 
  We protect your rights with a two-step method: (1) we copyright the 
library, and (2) we offer you this license, which gives you legal 
permission to copy, distribute and/or modify the library. 
 
  To protect each distributor, we want to make it very clear that 
there is no warranty for the free library.  Also, if the library is 
modified by someone else and passed on, the recipients should know 
that what they have is not the original version, so that the original 
author's reputation will not be affected by problems that might be 
introduced by others. 
 



  Finally, software patents pose a constant threat to the existence of 
any free program.  We wish to make sure that a company cannot 
effectively restrict the users of a free program by obtaining a 
restrictive license from a patent holder.  Therefore, we insist that 
any patent license obtained for a version of the library must be 
consistent with the full freedom of use specified in this license. 
 
  Most GNU software, including some libraries, is covered by the 
ordinary GNU General Public License.  This license, the GNU Lesser 
General Public License, applies to certain designated libraries, and 
is quite different from the ordinary General Public License.  We use 
this license for certain libraries in order to permit linking those 
libraries into non-free programs. 
 
  When a program is linked with a library, whether statically or using 
a shared library, the combination of the two is legally speaking a 
combined work, a derivative of the original library.  The ordinary 
General Public License therefore permits such linking only if the 
entire combination fits its criteria of freedom.  The Lesser General 
Public License permits more lax criteria for linking other code with 
the library. 
 
  We call this license the "Lesser" General Public License because it 
does Less to protect the user's freedom than the ordinary General 
Public License.  It also provides other free software developers Less 
of an advantage over competing non-free programs.  These disadvantages 
are the reason we use the ordinary General Public License for many 
libraries.  However, the Lesser license provides advantages in certain 
special circumstances. 
 
  For example, on rare occasions, there may be a special need to 
encourage the widest possible use of a certain library, so that it becomes 
a de-facto standard.  To achieve this, non-free programs must be 
allowed to use the library.  A more frequent case is that a free 
library does the same job as widely used non-free libraries.  In this 
case, there is little to gain by limiting the free library to free 
software only, so we use the Lesser General Public License. 
 
  In other cases, permission to use a particular library in non-free 
programs enables a greater number of people to use a large body of 
free software.  For example, permission to use the GNU C Library in 
non-free programs enables many more people to use the whole GNU 
operating system, as well as its variant, the GNU/Linux operating 
system. 
 
  Although the Lesser General Public License is Less protective of the 
users' freedom, it does ensure that the user of a program that is 
linked with the Library has the freedom and the wherewithal to run 
that program using a modified version of the Library. 
 
  The precise terms and conditions for copying, distribution and 
modification follow.  Pay close attention to the difference between a 
"work based on the library" and a "work that uses the library".  The 
former contains code derived from the library, whereas the latter must 
be combined with the library in order to run. 
 
    GNU LESSER GENERAL PUBLIC LICENSE 
   TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION 
 
  0. This License Agreement applies to any software library or other 
program which contains a notice placed by the copyright holder or 
other authorized party saying it may be distributed under the terms of 
this Lesser General Public License (also called "this License"). 



Each licensee is addressed as "you". 
 
  A "library" means a collection of software functions and/or data 
prepared so as to be conveniently linked with application programs 
(which use some of those functions and data) to form executables. 
 
  The "Library", below, refers to any such software library or work 
which has been distributed under these terms.  A "work based on the 
Library" means either the Library or any derivative work under 
copyright law: that is to say, a work containing the Library or a 
portion of it, either verbatim or with modifications and/or translated 
straightforwardly into another language.  (Hereinafter, translation is 
included without limitation in the term "modification".) 
 
  "Source code" for a work means the preferred form of the work for 
making modifications to it.  For a library, complete source code means 
all the source code for all modules it contains, plus any associated 
interface definition files, plus the scripts used to control compilation 
and installation of the library. 
 
  Activities other than copying, distribution and modification are not 
covered by this License; they are outside its scope.  The act of 
running a program using the Library is not restricted, and output from 
such a program is covered only if its contents constitute a work based 
on the Library (independent of the use of the Library in a tool for 
writing it).  Whether that is true depends on what the Library does 
and what the program that uses the Library does. 
   
  1. You may copy and distribute verbatim copies of the Library's 
complete source code as you receive it, in any medium, provided that 
you conspicuously and appropriately publish on each copy an 
appropriate copyright notice and disclaimer of warranty; keep intact 
all the notices that refer to this License and to the absence of any 
warranty; and distribute a copy of this License along with the 
Library. 
 
  You may charge a fee for the physical act of transferring a copy, 
and you may at your option offer warranty protection in exchange for a 
fee. 
 
  2. You may modify your copy or copies of the Library or any portion 
of it, thus forming a work based on the Library, and copy and 
distribute such modifications or work under the terms of Section 1 
above, provided that you also meet all of these conditions: 
 
    a) The modified work must itself be a software library. 
 
    b) You must cause the files modified to carry prominent notices 
    stating that you changed the files and the date of any change. 
 
    c) You must cause the whole of the work to be licensed at no 
    charge to all third parties under the terms of this License. 
 
    d) If a facility in the modified Library refers to a function or a 
    table of data to be supplied by an application program that uses 
    the facility, other than as an argument passed when the facility 
    is invoked, then you must make a good faith effort to ensure that, 
    in the event an application does not supply such function or 
    table, the facility still operates, and performs whatever part of 
    its purpose remains meaningful. 
 
    (For example, a function in a library to compute square roots has 
    a purpose that is entirely well-defined independent of the 



    application.  Therefore, Subsection 2d requires that any 
    application-supplied function or table used by this function must 
    be optional: if the application does not supply it, the square 
    root function must still compute square roots.) 
 
These requirements apply to the modified work as a whole.  If 
identifiable sections of that work are not derived from the Library, 
and can be reasonably considered independent and separate works in 
themselves, then this License, and its terms, do not apply to those 
sections when you distribute them as separate works.  But when you 
distribute the same sections as part of a whole which is a work based 
on the Library, the distribution of the whole must be on the terms of 
this License, whose permissions for other licensees extend to the 
entire whole, and thus to each and every part regardless of who wrote 
it. 
 
Thus, it is not the intent of this section to claim rights or contest 
your rights to work written entirely by you; rather, the intent is to 
exercise the right to control the distribution of derivative or 
collective works based on the Library. 
 
In addition, mere aggregation of another work not based on the Library 
with the Library (or with a work based on the Library) on a volume of 
a storage or distribution medium does not bring the other work under 
the scope of this License. 
 
  3. You may opt to apply the terms of the ordinary GNU General Public 
License instead of this License to a given copy of the Library.  To do 
this, you must alter all the notices that refer to this License, so 
that they refer to the ordinary GNU General Public License, version 2, 
instead of to this License.  (If a newer version than version 2 of the 
ordinary GNU General Public License has appeared, then you can specify 
that version instead if you wish.)  Do not make any other change in 
these notices. 
 
  Once this change is made in a given copy, it is irreversible for 
that copy, so the ordinary GNU General Public License applies to all 
subsequent copies and derivative works made from that copy. 
 
  This option is useful when you wish to copy part of the code of 
the Library into a program that is not a library. 
 
  4. You may copy and distribute the Library (or a portion or 
derivative of it, under Section 2) in object code or executable form 
under the terms of Sections 1 and 2 above provided that you accompany 
it with the complete corresponding machine-readable source code, which 
must be distributed under the terms of Sections 1 and 2 above on a 
medium customarily used for software interchange. 
 
  If distribution of object code is made by offering access to copy 
from a designated place, then offering equivalent access to copy the 
source code from the same place satisfies the requirement to 
distribute the source code, even though third parties are not 
compelled to copy the source along with the object code. 
 
  5. A program that contains no derivative of any portion of the 
Library, but is designed to work with the Library by being compiled or 
linked with it, is called a "work that uses the Library".  Such a 
work, in isolation, is not a derivative work of the Library, and 
therefore falls outside the scope of this License. 
 
  However, linking a "work that uses the Library" with the Library 
creates an executable that is a derivative of the Library (because it 



contains portions of the Library), rather than a "work that uses the 
library".  The executable is therefore covered by this License. 
Section 6 states terms for distribution of such executables. 
 
  When a "work that uses the Library" uses material from a header file 
that is part of the Library, the object code for the work may be a 
derivative work of the Library even though the source code is not. 
Whether this is true is especially significant if the work can be 
linked without the Library, or if the work is itself a library.  The 
threshold for this to be true is not precisely defined by law. 
 
  If such an object file uses only numerical parameters, data 
structure layouts and accessors, and small macros and small inline 
functions (ten lines or less in length), then the use of the object 
file is unrestricted, regardless of whether it is legally a derivative 
work.  (Executables containing this object code plus portions of the 
Library will still fall under Section 6.) 
 
  Otherwise, if the work is a derivative of the Library, you may 
distribute the object code for the work under the terms of Section 6. 
Any executables containing that work also fall under Section 6, 
whether or not they are linked directly with the Library itself. 
 
  6. As an exception to the Sections above, you may also combine or 
link a "work that uses the Library" with the Library to produce a 
work containing portions of the Library, and distribute that work 
under terms of your choice, provided that the terms permit 
modification of the work for the customer's own use and reverse 
engineering for debugging such modifications. 
 
  You must give prominent notice with each copy of the work that the 
Library is used in it and that the Library and its use are covered by 
this License.  You must supply a copy of this License.  If the work 
during execution displays copyright notices, you must include the 
copyright notice for the Library among them, as well as a reference 
directing the user to the copy of this License.  Also, you must do one 
of these things: 
 
    a) Accompany the work with the complete corresponding 
    machine-readable source code for the Library including whatever 
    changes were used in the work (which must be distributed under 
    Sections 1 and 2 above); and, if the work is an executable linked 
    with the Library, with the complete machine-readable "work that 
    uses the Library", as object code and/or source code, so that the 
    user can modify the Library and then relink to produce a modified 
    executable containing the modified Library.  (It is understood 
    that the user who changes the contents of definitions files in the 
    Library will not necessarily be able to recompile the application 
    to use the modified definitions.) 
 
    b) Use a suitable shared library mechanism for linking with the 
    Library.  A suitable mechanism is one that (1) uses at run time a 
    copy of the library already present on the user's computer system, 
    rather than copying library functions into the executable, and (2) 
    will operate properly with a modified version of the library, if 
    the user installs one, as long as the modified version is 
    interface-compatible with the version that the work was made with. 
 
    c) Accompany the work with a written offer, valid for at 
    least three years, to give the same user the materials 
    specified in Subsection 6a, above, for a charge no more 
    than the cost of performing this distribution. 
 



    d) If distribution of the work is made by offering access to copy 
    from a designated place, offer equivalent access to copy the above 
    specified materials from the same place. 
 
    e) Verify that the user has already received a copy of these 
    materials or that you have already sent this user a copy. 
 
  For an executable, the required form of the "work that uses the 
Library" must include any data and utility programs needed for 
reproducing the executable from it.  However, as a special exception, 
the materials to be distributed need not include anything that is 
normally distributed (in either source or binary form) with the major 
components (compiler, kernel, and so on) of the operating system on 
which the executable runs, unless that component itself accompanies 
the executable. 
 
  It may happen that this requirement contradicts the license 
restrictions of other proprietary libraries that do not normally 
accompany the operating system.  Such a contradiction means you cannot 
use both them and the Library together in an executable that you 
distribute. 
 
  7. You may place library facilities that are a work based on the 
Library side-by-side in a single library together with other library 
facilities not covered by this License, and distribute such a combined 
library, provided that the separate distribution of the work based on 
the Library and of the other library facilities is otherwise 
permitted, and provided that you do these two things: 
 
    a) Accompany the combined library with a copy of the same work 
    based on the Library, uncombined with any other library 
    facilities.  This must be distributed under the terms of the 
    Sections above. 
 
    b) Give prominent notice with the combined library of the fact 
    that part of it is a work based on the Library, and explaining 
    where to find the accompanying uncombined form of the same work. 
 
  8. You may not copy, modify, sublicense, link with, or distribute 
the Library except as expressly provided under this License.  Any 
attempt otherwise to copy, modify, sublicense, link with, or 
distribute the Library is void, and will automatically terminate your 
rights under this License.  However, parties who have received copies, 
or rights, from you under this License will not have their licenses 
terminated so long as such parties remain in full compliance. 
 
  9. You are not required to accept this License, since you have not 
signed it.  However, nothing else grants you permission to modify or 
distribute the Library or its derivative works.  These actions are 
prohibited by law if you do not accept this License.  Therefore, by 
modifying or distributing the Library (or any work based on the 
Library), you indicate your acceptance of this License to do so, and 
all its terms and conditions for copying, distributing or modifying 
the Library or works based on it. 
 
  10. Each time you redistribute the Library (or any work based on the 
Library), the recipient automatically receives a license from the 
original licensor to copy, distribute, link with or modify the Library 
subject to these terms and conditions.  You may not impose any further 
restrictions on the recipients' exercise of the rights granted herein. 
You are not responsible for enforcing compliance by third parties with 
this License. 
 



  11. If, as a consequence of a court judgment or allegation of patent 
infringement or for any other reason (not limited to patent issues), 
conditions are imposed on you (whether by court order, agreement or 
otherwise) that contradict the conditions of this License, they do not 
excuse you from the conditions of this License.  If you cannot 
distribute so as to satisfy simultaneously your obligations under this 
License and any other pertinent obligations, then as a consequence you 
may not distribute the Library at all.  For example, if a patent 
license would not permit royalty-free redistribution of the Library by 
all those who receive copies directly or indirectly through you, then 
the only way you could satisfy both it and this License would be to 
refrain entirely from distribution of the Library. 
 
If any portion of this section is held invalid or unenforceable under any 
particular circumstance, the balance of the section is intended to apply, 
and the section as a whole is intended to apply in other circumstances. 
 
It is not the purpose of this section to induce you to infringe any 
patents or other property right claims or to contest validity of any 
such claims; this section has the sole purpose of protecting the 
integrity of the free software distribution system which is 
implemented by public license practices.  Many people have made 
generous contributions to the wide range of software distributed 
through that system in reliance on consistent application of that 
system; it is up to the author/donor to decide if he or she is willing 
to distribute software through any other system and a licensee cannot 
impose that choice. 
 
This section is intended to make thoroughly clear what is believed to 
be a consequence of the rest of this License. 
 
  12. If the distribution and/or use of the Library is restricted in 
certain countries either by patents or by copyrighted interfaces, the 
original copyright holder who places the Library under this License may add 
an explicit geographical distribution limitation excluding those countries, 
so that distribution is permitted only in or among countries not thus 
excluded.  In such case, this License incorporates the limitation as if 
written in the body of this License. 
 
  13. The Free Software Foundation may publish revised and/or new 
versions of the Lesser General Public License from time to time. 
Such new versions will be similar in spirit to the present version, 
but may differ in detail to address new problems or concerns. 
 
Each version is given a distinguishing version number.  If the Library 
specifies a version number of this License which applies to it and 
"any later version", you have the option of following the terms and 
conditions either of that version or of any later version published by 
the Free Software Foundation.  If the Library does not specify a 
license version number, you may choose any version ever published by 
the Free Software Foundation. 
 
  14. If you wish to incorporate parts of the Library into other free 
programs whose distribution conditions are incompatible with these, 
write to the author to ask for permission.  For software which is 
copyrighted by the Free Software Foundation, write to the Free 
Software Foundation; we sometimes make exceptions for this.  Our 
decision will be guided by the two goals of preserving the free status 
of all derivatives of our free software and of promoting the sharing 
and reuse of software generally. 
 
       NO WARRANTY 
 



  15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO 
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. 
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR 
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY 
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE 
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 
PURPOSE.  THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE 
LIBRARY IS WITH YOU.  SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME 
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 
 
  16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN 
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY 
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU 
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR 
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE 
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING 
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A 
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF 
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGES. 
 
       END OF TERMS AND CONDITIONS 
 


